Theorems Algebraic topology qualifying course MSU, Spring 2017

Joshua Ruiter

October 15, 2019

This document was made as a way to study the material from the spring semester algebraic topology qualifying course at Michigan State University, in spring of 2017. It serves as a companion document to the "Definitions" review sheet for the same class. The main textbook for the course was *Algebraic Topology*, by Hatcher.

Contents

1	Homotopy and Cell Complexes	2
2	The Fundamental Group	3
	2.1 Corollaries to $\pi_1(S^1) \cong \mathbb{Z}$	3
	2.2 Van Kampen's Theorem	
	2.3 Covering Spaces	6
3	Simplicial and Singular Homology	8
	3.1 Δ -Complexes and Simplicial Homology	8
	3.2 Singular Homology	8
	3.3 Homotopy Invariance of Singular Homology	9

1 Homotopy and Cell Complexes

Proposition 1.1. Homotopy of maps is an equivalence relation.

Proposition 1.2. Homotopy of spaces is an equivalence relation.

Proposition 1.3. Two spaces X, Y are homotopy equivalent if and only if there is a space Z containing both X and Y such that X, Y are both deformation retracts of Z.

Proposition 1.4. A contractible space is path connected.

Lemma 1.5. Let $f_0, f_1: X \to Y$ be homotopic and $g: Y \to Z$. Then $gf_0 \simeq gf_1$.

Lemma 1.6. Let $f_0, f_1: X \to Y$ be homotopic and $h: Z \to X$. Then $f_0h \simeq f_1h$.

Theorem 1.7. If (X, A) is a CW pair consisting of a CW complex X and a contractible subcomplex A, then the quotient map $X \to X/A$ is a homotopy equivalence. That is, if a subcomplex is contractible, we can contract it to a point without changing the homotopy class of X.

Theorem 1.8. Let X, Y be CW complexes. Then $\Sigma(X \vee Y) = \Sigma X \vee \Sigma Y$.

Theorem 1.9. Let (X, A) be a CW pair and $f, g : A \to Y$ be homotopic. Then $Y \sqcup_f X \simeq Y \sqcup_g X$. That is, homotopic attaching maps form homotopy equivalent spaces after attaching.

Theorem 1.10. A pair (X, A) has the homotopy extension property if and only if $(X \times \{0\}) \cup (A \times I)$ is a retract of $X \times I$.

Theorem 1.11. Let (X, A) be a CW pair. Then $(X \times \{0\}) \cup (A \times I)$ is a deformation retract of $X \times I$. Consequently, (X, A) has the homotopy extension property.

Theorem 1.12. If (X, A) satisfies the homotopy extension property and A is contractible, then the quotient map $q: X \to X/A$ is a homotopy equivalence.

Theorem 1.13. Let (X, A) be a CW pair, and $f, g : A \to Y$ be attaching maps with $f \simeq g$. Then $Y \sqcup_f X \simeq Y \sqcup_g X$ rel Y.

Theorem 1.14. Suppose (X, A) and (Y, A) satisfy the homotopy extension property and $f: X \to Y$ is a homotopy equivalence with $f|_A = \operatorname{Id}_A$. Then f is a homotopy equivalence rel A.

Theorem 1.15. If (X, A) satisfies the homotopy extension property and the inclusion $A \hookrightarrow X$ is a homotopy equivalence, then A is a deformation retract of X.

Theorem 1.16. A map $f: X \to Y$ is a homotopy equivalence if and only if X is a deformation retract of the mapping cylinder M_f . That is, X, Y are homotopy equivalent if and only if there is a space containing both X, Y as deformation retracts.

2 The Fundamental Group

Proposition 2.1. Let X be a space and fix $x_0, x_1 \in X$. The relation of homotopy of paths $f: I \to X$ with $f(0) = x_0$ and $f(1) = x_1$ is an equivalence relation.

Proposition 2.2. Let f_0, f_1, g_0, g_1 be paths such that $f_0(1) = g_0(0)$ and $f_0 \simeq f_1$ and $g_0 \simeq g_1$. Then $f_0 \cdot g_0 \simeq f_1 \cdot g_1$.

Proposition 2.3. $\pi_1(X, x_0)$ is a group with respect to the product $[f][g] = [f \cdot g]$.

Proposition 2.4. A change-of-basepoint map $\beta_h : \pi_1(X, x_1) \to \pi_1(X, x_0)$ is an isomorphism.

Proposition 2.5. A space is simply connected if and only if there is a unique homotopy class of paths connecting any two points in X.

Proposition 2.6. $\pi_1(S^1) \cong \mathbb{Z}$. In particular, it is generated by the homotopy class of the loop $w: I \to S^1$ given by $t \mapsto e^{2\pi it}$.

Proposition 2.7. Let $p: \widetilde{X} \to X$ be a covering map. For each path $f: I \to X$ starting at $x_0 \in X$ and each $\widetilde{x}_0 \in p^{-1}(x_0)$, there is a unique lift $\widetilde{f}: I \to \widetilde{X}$ starting at \widetilde{x}_0 .

Proposition 2.8. Let $p: \widetilde{X} \to X$ be a covering map. For each homotopy of paths $f_t: I \to X$ starting at x_0 and each $\widetilde{x}_0 \in p^{-1}(x_0)$, there is a unique lifted homotopy of paths $\widetilde{f}_t: I \to \widetilde{X}$ starting at \widetilde{x}_0 .

Proposition 2.9. Let $p: \widetilde{X} \to X$ be a covering map. Let $F: Y \times I \to X$ and suppose there is a map $\widetilde{F}: Y \times \{0\} \to \widetilde{X}$ that is a lift of $F|_{Y \times \{0\}}$. Then there is a unique map $\widetilde{F}: Y \times I \to X$ lifting F that restricts to the previous \widetilde{F} on $Y \times \{0\}$. Diagrammatically, given all of the following solid arrows, the dotted arrow exists and is the unique map making the triangle commute.

$$Y \times I \xrightarrow{\widetilde{F}} X \qquad Y \times \{0\} \xrightarrow{\widetilde{F}} X$$

$$Y \times \{0\} \xrightarrow{\widetilde{F}} X$$

2.1 Corollaries to $\pi_1(S^1) \cong \mathbb{Z}$

Proposition 2.10 (Fundamental Theorem of Algebra). Every nonconstant polynomial with coefficients in \mathbb{C} has a root in \mathbb{C} .

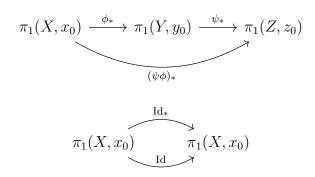
Proposition 2.11 (Brouwer Fixed Point Theorem, dimension 2). Every continuous map $h: D^2 \to D^2$ has a fixed point.

Proposition 2.12 (Borsuk-Ulam Theorem, dimension 2). Let $f: S^2 \to \mathbb{R}^2$ be continuous. Then there exists $x \in S^2$ so that f(x) = f(-x).

Proposition 2.13. If $S^2 = A_1 \cup A_2 \cup A_3$ where A_i are closed, then one A_i must contain a pair of antipodal points.

Proposition 2.14. Let X, Y be path connected. Then $\pi_1(X \times Y) \cong \pi_1(X) \times \pi_1(Y)$.

Proposition 2.15. The assignment $(X, x_0) \mapsto \pi_1(X, x_0)$ and $\phi \mapsto \phi_*$ is a functor from the category of pointed topological spaces to the category of groups. That is, if we have pointed spaces $(X, x_0), (Y, y_0), (Z, z_0)$ and pointed continuous maps $\phi : (X, x_0) \to (Y, y_0)$ and $\psi : (Y, y_0) \to (Z, z_0)$, the following two diagrams commute.



That is, $(\psi \phi) * = \psi_* \phi_*$ and $\mathrm{Id}_* = \mathrm{Id}_{\pi_1(X, x_0)}$.

Proposition 2.16. $\pi_1(S^n) = 0 \text{ for } n \ge 2.$

Proposition 2.17. Let $X = \bigcup_{\alpha} A_{\alpha}$, where each A_{α} is a path connected open subset of X, and $x_0 \in A_{\alpha}$ for all α . Suppose that $A_{\alpha} \cap A_{\beta}$ is path connected for each α, β . Then every loop in X based at x_0 is homotopic to a product of loops each of which is contained in some A_{α} .

Proposition 2.18. \mathbb{R}^2 is not homeomorphic to \mathbb{R}^n for $n \neq 2$.

Proposition 2.19. Let A be a retract of X and $\iota: A \to X$ be the inclusion. Then the induced homomorphism $\iota_*: \pi_1(A, x_0) \to \pi_1(X, x_0)$ is injective. If A is a deformation retract of X, then ι_* is an isomorphism.

Proposition 2.20. Let $r: X \to A$ be a retraction. Then $r_*: \pi_1(X) \to \pi_1(A)$ is surjective.

Proposition 2.21. If $\phi: X \to Y$ is a homotopy equivalence, then $\phi_*: \pi_1(X) \to \pi_1(Y)$ is an isomorphism.

2.2 Van Kampen's Theorem

Proposition 2.22 (Universal Property of Free Product). Let G_{α} be a collection of groups, and let $*_{\alpha}G_{\alpha}$ be the free product. Let H be a group, and suppose we have a collection ϕ_{α} : $G_{\alpha} \to H$ of group homomorphisms. Then there is a unique homomorphism $\phi : *_{\alpha}G_{\alpha} \to H$. Given a word $g_1 \ldots g_n$, ϕ acts on the word by applying ϕ_{α} to each g_i , where α is chosen to match which G_{α} that particular g_i comes from.

Proposition 2.23 (Van Kampen's Theorem). Let $X = \bigcup_{\alpha} A_{\alpha}$ where each A_{α} is path connected and an open subset of X, and each A_{α} contains the basepoint x_0 . Suppose that $A_{\alpha} \cap A_{\beta}$ is path connected for all α, β . Let $j_{\alpha} : \pi_1(A_{\alpha}, x_0) \to \pi_1(X, x_0)$ be the homomorphism induced

by the inclusion $A_{\alpha} \hookrightarrow X$. Let $\Phi : *_{\alpha}\pi_1(A_{\alpha}, x_0) \to \pi_1(X, x_0)$ be the unique extension of all the j_{α} . Then Φ is surjective.

Let $i_{\alpha\beta}: \pi_1(A_{\alpha} \cap A_{\beta}, x_0) \to \pi_1(X, x_0)$ be the homomorphism induced by the inclusion $A_{\alpha} \cap A_{\beta} \hookrightarrow X$. If $A_{\alpha} \cap A_{\beta} \cap A_{\gamma}$ is path connected for all α, β, γ , then $\ker \Phi$ is the normal subgroup N generated by elements of the form $i_{\alpha\beta}(\omega)i_{\beta\alpha}(\omega)^{-1}$ for $\omega \in \pi_1(A_{\alpha} \cap A_{\beta}, x_0)$. Consequently,

$$\pi_1(X, x_0) \cong (*_{\alpha} \pi_1(A_{\alpha})) / N$$

Proposition 2.24. Let (X_{α}, x_{α}) be a collection of path connected pointed spaces, so that for each α there exists $U_{\alpha} \subset X_{\alpha}$ where U_{α} deformation retracts to the point x_{α} . Then (by Van Kampen's Theorem), the fundamental group of the wedge sum by identifying all basepoints x_{α} is the free product of the fundamental groups. Symbolically,

$$\pi_1\left(\bigvee_{\alpha} X_{\alpha}\right) \cong *_{\alpha} X_{\alpha}$$

Proposition 2.25.

$$\pi_1\left(\bigvee_{\alpha\in A}S^1_{\alpha}\right)\cong *_{\alpha}\mathbb{Z}\cong F\langle A\rangle$$

where $F\langle A \rangle$ is the free group on the set A.

Proposition 2.26. The fundamental group of any connected graph is free.

Proposition 2.27. Let (X, x_0) be a path connected space, and form a space (Y, x_0) by attaching 2-cells e_{α}^2 to X via attaching maps $\phi_{\alpha}: (S^1, s_0) \to (X, x_0)$. Then the inclusion $\iota: (X, x_0) \hookrightarrow (Y, x_0)$ induces a surjection $\iota_*: \pi_1(X, x_0) \to \pi_1(Y, x_0)$.

Then kernel of ι_* is the subgroup of $\pi_1(X, x_0)$ generated by elements of the form $\gamma_\alpha \phi_\alpha \overline{\gamma}_\alpha$, where ϕ_α is one of the attaching maps and γ_α is a path from x_0 to $\phi_\alpha(s_0)$.

$$\ker \iota_* = \langle \gamma_\alpha \phi_\alpha \overline{\gamma}_\alpha \rangle$$

Consequently, $\pi_1(Y) \cong \pi_1(X) / \ker \iota_*$.

Proposition 2.28. Let (X, x_0) be a path connected space, and form a space (Y, x_0) by attaching n-cells to X, where n > 2. Then the inclusion $(X, x_0) \hookrightarrow (Y, x_0)$ induces an isomorphism $\pi_1(X, x_0) \cong \pi_1(Y, x_0)$.

Proposition 2.29. Let X be a path connected cell complex. Then the inclusion of the 2-skeleton $X^2 \hookrightarrow X$ induces an isomorphism $\pi_1(X^2) \cong \pi_1(X)$.

Proposition 2.30. Let M_g be the orientable surface of genus g. Then $\pi_1(M_g)$ has the presentation

$$\langle a_1, b_1, \dots, a_g, b_g \mid a_1b_1a_1^{-1}b_1^{-1}, \dots, a_gb_ga_g^{-1}b_g^{-1} \rangle$$

As a consequence, M_g is homotopy equivalent to M_h if and only if g = h.

Proposition 2.31. Let N_g be the nonorientable surface of genus g. Then $\pi_1(N_g)$ has the presentation

$$\langle a_1, \ldots, a_g \mid a_1^2 \ldots a_g^2 \rangle$$

As a consequence, N_g is homotopy equivalent to N_h if and only if g = h.

Proposition 2.32. Let G be a group. Then there is a 2-dimensional cell complex X so that $\pi_1(X) \cong G$.

2.3 Covering Spaces

Proposition 2.33 (Homotopy Lifting Property). Let $p: \widetilde{X} \to X$ be a covering space, and let $f_t: Y \to X$ be a homotopy, and suppose there is a lift $\widetilde{f_0}: Y \to \widetilde{X}$ lifting f_0 . Then there exists a unique homotopy $\widetilde{f_t}: Y \to \widetilde{X}$ lifting f_t that agrees with $\widetilde{f_0}$ at t = 0. This is depicted in the following diagrams.

$$Y \xrightarrow{\widetilde{f_0}} X \qquad \qquad Y \xrightarrow{f_t} X \qquad \qquad X$$

The following is a special case of the homotopy lifting property where Y is a single point.

Proposition 2.34 (Path Lifting Property). Let $p: \widetilde{X} \to X$ be a covering space and $f: I \to X$ be a path. Define $x_0 = f(0)$. For each $\widetilde{x}_0 \in p^{-1}(x_0)$, there is a unique path $\widetilde{f}: I \to \widetilde{X}$ lifting f that begins at \widetilde{x}_0 .

$$I \xrightarrow{\widetilde{f}} \widetilde{X}$$

$$\downarrow^p$$

$$X$$

Proposition 2.35. Let $p:(\widetilde{X},\widetilde{x}_0)\to (X,x_0)$ be a covering map. The induced map $p_*:\pi_1(\widetilde{X},\widetilde{x}_0)\to \pi_1(X,x_0)$ is injective. Furthermore, the image subgroup $p_*(\pi_1(\widetilde{X},\widetilde{x}_0))$ consists of homotopy classes of loops in X based at x_0 whose lifts to \widetilde{X} starting at \widetilde{x}_0 are loops.

Proposition 2.36. Let $p: \widetilde{X} \to X$ be a covering space with \widetilde{X} and X path connected. The number of sheets of the covering is equal to the index of the image subgroup $p_*(\pi_1(\widetilde{X}))$ in $\pi_1(X)$.

Proposition 2.37 (Lifting Criterion). Let $p: \widetilde{X} \to X$ be a covering space, and $f: Y \to X$ be a map. Assume that Y is path connected and locally path connected. Then a lift $\widetilde{f}: Y \to \widetilde{X}$ exists if and only if $f_*(\pi_1(Y)) \subset p_*(\pi_1(\widetilde{X}))$. (Below are some relevant diagrams.)

$$\pi_1(\widetilde{X}) \qquad \qquad \widetilde{X}$$

$$\downarrow^{p_*} \qquad \qquad \widetilde{f} \qquad \qquad \downarrow^p$$

$$\pi_1(Y) \xrightarrow{f_*} \pi_1(X) \qquad \qquad Y \xrightarrow{f} X$$

Proposition 2.38 (Unique Lifting Property). Let $p: \widetilde{X} \to X$ be a covering space and let $f: Y \to X$, where Y is connected. If $\widetilde{f}_1, \widetilde{f}_2$ are both lifts of f, and \widetilde{f}_1 and \widetilde{f}_2 agree on one point, then $\widetilde{f}_1 = \widetilde{f}_2$.

Proposition 2.39. Let X be a path connected, locally path connected, and semilocally simply connected. Then there is a simply connected covering space $p: \widetilde{X} \to X$. It is unique up to isomorphism.

Proposition 2.40. Let X be path connected, locally path connected, and semilocally simply connected. Then for every subgroup $H \subset \pi_1(X)$, there is a covering space $p: X_H \to X$ such that $p_*(\pi_1(X_H)) = H$.

Proposition 2.41. Let (X, x_0) be path connected and locally path connected. Let $p_1 : \widetilde{X}_1 \to X$ and $p_2 : \widetilde{X}_2 \to X_2$ be path connected covering spaces. Then \widetilde{X}_1 and \widetilde{X}_2 are isomorphic via an isomorphism $f : \widetilde{X}_1 \to \widetilde{X}_2$ taking a basepoint $\widetilde{x}_1 \in p_1^{-1}(x_0)$ to $\widetilde{x}_2 \in p_2^{-1}(x_0)$ if and only if $p_{1*}(\pi_1(\widetilde{X}_1,\widetilde{x}_1)) = p_{2*}(\pi_1(\widetilde{X}_2,\widetilde{x}_2))$.

Proposition 2.42 (Classification of Covering Spaces, with basepoints). Let (X, x_0) be path connected, locally path connected, and semilocally simply connected. To a path connected covering space $p: (\widetilde{X}, \widetilde{x}_0) \to (X, x_0)$, we associate the subgroup $p_*(\pi_1(\widetilde{X}, \widetilde{x}_0))$. This gives a bijection between the set of basepoint-preserving isomorphism classes of path connected covering spaces $p: (\widetilde{X}, \widetilde{x}_0) \to (X, x_0)$ and the set of subgroups of $\pi_1(X, x_0)$.

Proposition 2.43 (Classification of Covering Spaces, ignoring basepoints). Let X be path connected, locally path connected, and semilocally simply connected. To a path connected covering space $p: \widetilde{X} \to X$, we associate the conjugacy class of the subgroup $p_*(\pi_1(\widetilde{X}))$ in $\pi_1(X)$. This gives a bijection between isomorphism classes of path connected covering spaces $p: \widetilde{X} \to X$ and conjugacy classes of subgroups of $\pi_1(X)$.

Proposition 2.44. Let $p: \widetilde{X} \to X$. A deck transformation $\widetilde{X} \to \widetilde{X}$ is uniquely determined by where it sends a single point. In particular, any deck transformation with a fixed point is the identity.

Proposition 2.45. Let $p:(\widetilde{X},\widetilde{x}_0)\to (X,x_0)$ be a path connected covering space of a path connected and locally path connected space X. Let H be the subgroup $p_*(\pi_1(\widetilde{X},\widetilde{x}_0))$. Then

- 1. The covering space $p: \widetilde{X} \to X$ is normal if and only if H is a normal subgroup.
- 2. The group of deck transformations is isomorphic to the quotient N(H)/H, where N(H) is the normalizer.
- 3. If \widetilde{X} is the universal cover, then the group of deck transformations is isomorphic to $\pi_1(X)$. (This follows immediately from (2)).

Proposition 2.46. Let G act on \widetilde{X} via a covering space action. Then

- 1. The quotient map $p: \widetilde{X} \to \widetilde{X}/G$ defined by $\widetilde{x} \mapsto G\widetilde{x}$ is a normal covering space.
- 2. If \widetilde{X} is path connected, then G is the group of deck transformations of the covering space $p: \widetilde{X} \to \widetilde{X}/G$.
- 3. If \widetilde{X} is path connected and locally path connected, then $G \cong \pi_1(\widetilde{X}/G)/p_*(\pi_1(\widetilde{X}))$.
- 4. If \widetilde{X} is path connected, locally path conected, and simply connected, then $G \cong \pi_1(\widetilde{X}/G)$.

3 Simplicial and Singular Homology

3.1 Δ -Complexes and Simplicial Homology

Proposition 3.1. Let X be a Δ -complex, and let ∂_n be the boundary homomorphisms. Then $\partial_{n-1} \circ \partial_n = 0$. Thus we have a chain complex

$$\dots \xrightarrow{\partial_{n+1}} \Delta_n(X) \xrightarrow{\partial_n} \Delta_{n-1}(X) \xrightarrow{\partial_{n-1}} \Delta_{n-2}(X) \xrightarrow{\partial_{n-2}} \dots$$

3.2 Singular Homology

Proposition 3.2. Let X be a space, and let ∂_n be the boundary homomorphism. Then $\partial_{n-1} \circ \partial_n = 0$, so we have a chain complex

$$\dots \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \xrightarrow{\partial_{n-1}} C_{n-2}(X) \xrightarrow{\partial_{n-2}} \dots$$

Proposition 3.3. Homeomorphic spaces have isomorphic singular homology groups.

Proposition 3.4. Let X be a space, written as a disjoint union $\bigsqcup_{\alpha} X_{\alpha}$ where X_{α} are the path components of X. Then

$$H_n(X) = H_n\left(\bigsqcup_{\alpha} X_{\alpha}\right) \cong \bigoplus_{\alpha} H_n(X_{\alpha})$$

Proposition 3.5. If X is nonempty and path connected, then $H_0(X) \cong \mathbb{Z}$. Consequently, for any space X, $H_0(X) = \bigoplus_{i \in I} \mathbb{Z}$ where the path components of X are also indexed by I.

Proposition 3.6. If X is a point, then $H_0(X) \cong \mathbb{Z}$ and $H_n(X) = 0$ for $n \geq 1$.

Proposition 3.7. Let X be a path connected space. Then $H_1(X)$ is the abelianization of $\pi_1(X)$.

3.3 Homotopy Invariance of Singular Homology

Proposition 3.8. Homotopy equivalent spaces have isomorphic homology groups. (To be shown at the end of this section.)

Proposition 3.9. Let $f: X \to Y$, and let $f_{\#}: C_n(X) \to C_n(Y)$ be the induced map on singular n-chains. Then $f_{\#}\partial = \partial f_{\#}$, so the following diagram commutes.

Proposition 3.10. A chain map of chain complexes induces homomorphisms between the homology groups of the complexes. Concretely, if C_n and D_n are complexes with homology H_n^C and H_n^D respectively, and $f_n: C_n \to D_n$ is a chain map, then f_n induces a homomorphism $f_n: H_n^C \to H_n^D$.

Proposition 3.11 (Functoriality of Homology). Let $f: Y \to Z$ and $g: X \to Y$, and let f_*, g_* be the induced maps on (singular) homology. Then $(fg)_* = f_*g_*$. Additionally, the induced map from the identity is the identity, i.e. $(\operatorname{Id}_X)_* = \operatorname{Id}_{H_n(X)}$.

Proposition 3.12. Chain homotopic maps induce the same homomorphism on homology.

Proposition 3.13. If $f, g: X \to Y$ are homotopic, then the induced maps $f_\#, g_\#: C_n(X) \to C_n(Y)$ are chain homotopic. Consequently, f, g induce the same homomorphism on homology, $f_* = g_*: H_n(X) \to H_n(Y)$.

Proposition 3.14. If $f: X \to Y$ is a homotopy equivalence, then the induced maps $f_*: H_n(X) \to H_n(Y)$ are isomorphisms for all n.

Proposition 3.15 (Some Basic Facts About Exact Sequences). Let A, B, C be abelian groups. (Or more generally, R-modules.)

- 1. $0 \to A \to B$ is exact if and only if $A \to B$ is injective.
- 2. $B \rightarrow C \rightarrow 0$ is exact if and only if $B \rightarrow C$ is surjective.
- 3. $0 \rightarrow A \rightarrow B \rightarrow 0$ is exact if and only if $A \rightarrow B$ is an isomorphism.
- 4. $0 \to A \to B \to C \to 0$ is exact if and only if $A \to B$ is injective and $B \to C$ is surjective. If this is exact, then $B \to C$ induces an isomorphism $C \cong B/\operatorname{im} A$

Proposition 3.16 (Long Exact Sequence of Homology). Let X be a space and let $A \subset X$ be a nonempty closed subspace that is a deformation retract of some neighborhood in X. (That is, (X, A) is a good pair.) Then there is an exact sequence

$$\dots \longrightarrow \widetilde{H}_n(A) \xrightarrow{\iota_*} \widetilde{H}_n(X) \xrightarrow{j_*} \widetilde{H}_n(X/A) \xrightarrow{\partial} \widetilde{H}_{n-1}(A) \xrightarrow{\iota_*} \widetilde{H}_{n-1}(X) \longrightarrow \dots$$

$$\ldots \longrightarrow \widetilde{H}_0(X/A) \longrightarrow 0$$

Proposition 3.17 (Homology of Spheres). $\widetilde{H}_n(S^n) \cong \mathbb{Z}$ and $\widetilde{H}_i(S^n) = 0$ for $i \neq n$.

Proposition 3.18 (Brouwer Fixed Point Theorem). ∂D^n is not a retract of D^n . Hence every map $f: D^n \to D^n$ has a fixed point.

Proposition 3.19. Let X be a space and $A \subset X$. Then we have an exact sequence of chain complexes $0 \to C_n(A) \to C_n(X) \to C_n(X,A) \to 0$. This induces a long exact sequence on homology:

$$\dots \longrightarrow H_n(A) \xrightarrow{\iota_*} H_n(X) \xrightarrow{j_*} H_n(X,A) \xrightarrow{\partial} H_{n-1}(A) \xrightarrow{\iota_*} H_{n-1}(X) \longrightarrow \dots$$

$$\dots \longrightarrow H_0(X,A) \longrightarrow 0$$

Proposition 3.20. If $f, g: (X, A) \to (Y, B)$ are homotopic through maps of pairs $(X, A) \to (Y, B)$, then $f_* = g_*: H_n(X, A) \to H_n(Y, B)$.

Proposition 3.21 (Excision Theorem, Version 1). Let X be a space and let $Z \subset A \subset X$ where the closure of Z is contained in the interior of A. Then the inclusion $(X \setminus Z, A \setminus Z) \hookrightarrow (X, A)$ induces isomorphisms $H_n(X \setminus Z, A \setminus Z) \to H_n(X, A)$ for all n.

Proposition 3.22 (Excision Theorem, Version 2). Let X be a space and let $A, B \subset X$ such that the $X \subset \mathring{A} \cup \mathring{B}$. Then the inclusion $(B, A \cap B) \hookrightarrow (X, A)$ induces isomorphisms $H_n(B, A \cap B) \to H_n(X, A)$ for all n.

Proposition 3.23 (Mayer-Vietoris Sequence). Let X be a space. If $A, B \subset X$ such that $X = \overset{\circ}{A} \cup \overset{\circ}{B}$, then we have an exact sequence on homology:

$$\dots \longrightarrow H_n(A \cap B) \longrightarrow H_n(A) \oplus H_n(B) \longrightarrow H_n(X) \longrightarrow H_{n-1}(A \cap B) \longrightarrow \dots$$

$$\dots \longrightarrow H_0(X) \longrightarrow 0$$

More generally, if $X = A \cup B$ and there are neighborhoods U such that U deformation retracts onto A and V where V deformation retracts onto B, then we get the same exact sequence. (So we can not worry about whether $X = A \cup B$.)