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This document was made as a way to study the material from the spring semester algebraic
topology qualifying course at Michigan State University, in spring of 2017. It serves as
a companion document to the “Definitions” review sheet for the same class. The main
textbook for the course was Algebraic Topology, by Hatcher.
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1 Homotopy and Cell Complexes

Proposition 1.1. Homotopy of maps is an equivalence relation.

Proposition 1.2. Homotopy of spaces is an equivalence relation.

Proposition 1.3. Two spaces X, Y are homotopy equivalent if and only if there is a space
Z containing both X and Y such that X, Y are both deformation retracts of Z.

Proposition 1.4. A contractible space is path connected.

Lemma 1.5. Let f0, f1 : X → Y be homotopic and g : Y → Z. Then gf0 ' gf1.

Lemma 1.6. Let f0, f1 : X → Y be homotopic and h : Z → X. Then f0h ' f1h.

Theorem 1.7. If (X,A) is a CW pair consisting of a CW complex X and a contractible
subcomplex A, then the quotient map X → X/A is a homotopy equivalence. That is, if a
subcomplex is contractible, we can contract it to a point without changing the homotopy class
of X.

Theorem 1.8. Let X, Y be CW complexes. Then Σ(X ∨ Y ) = ΣX ∨ ΣY .

Theorem 1.9. Let (X,A) be a CW pair and f, g : A → Y be homotopic. Then Y tf X '
Y tgX. That is, homotopic attaching maps form homotopy equivalent spaces after attaching.

Theorem 1.10. A pair (X,A) has the homotopy extension property if and only if
(X × {0}) ∪ (A× I) is a retract of X × I.

Theorem 1.11. Let (X,A) be a CW pair. Then (X×{0})∪(A×I) is a deformation retract
of X × I. Consequently, (X,A) has the homotopy extension property.

Theorem 1.12. If (X,A) satisfies the homotopy extension property and A is contractible,
then the quotient map q : X → X/A is a homotopy equivalence.

Theorem 1.13. Let (X,A) be a CW pair, and f, g : A→ Y be attaching maps with f ' g.
Then Y tf X ' Y tg X relY .

Theorem 1.14. Suppose (X,A) and (Y,A) satisfy the homotopy extension property and
f : X → Y is a homotopy equivalence with f |A = IdA. Then f is a homotopy equivalence
relA.

Theorem 1.15. If (X,A) satisfies the homotopy extension property and the inclusion A ↪→
X is a homotopy equivalence, then A is a deformation retract of X.

Theorem 1.16. A map f : X → Y is a homotopy equivalence if and only if X is a
deformation retract of the mapping cylinder Mf . That is, X, Y are homotopy equivalent if
and only if there is a space containing both X, Y as deformation retracts.
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2 The Fundamental Group

Proposition 2.1. Let X be a space and fix x0, x1 ∈ X. The relation of homotopy of paths
f : I → X with f(0) = x0 and f(1) = x1 is an equivalence relation.

Proposition 2.2. Let f0, f1, g0, g1 be paths such that f0(1) = g0(0) and f0 ' f1 and g0 ' g1.
Then f0 · g0 ' f1 · g1.

Proposition 2.3. π1(X, x0) is a group with respect to the product [f ][g] = [f · g].

Proposition 2.4. A change-of-basepoint map βh : π1(X, x1)→ π1(X, x0) is an isomorphism.

Proposition 2.5. A space is simply connected if and only if there is a unique homotopy
class of paths connecting any two points in X.

Proposition 2.6. π1(S
1) ∼= Z. In particular, it is generated by the homotopy class of the

loop w : I → S1 given by t 7→ e2πit.

Proposition 2.7. Let p : X̃ → X be a covering map. For each path f : I → X starting at
x0 ∈ X and each x̃0 ∈ p−1(x0), there is a unique lift f̃ : I → X̃ starting at x̃0.

Proposition 2.8. Let p : X̃ → X be a covering map. For each homotopy of paths ft : I → X
starting at x0 and each x̃0 ∈ p−1(x0), there is a unique lifted homotopy of pahts f̃t : I → X̃
starting at x̃0.

Proposition 2.9. Let p : X̃ → X be a covering map. Let F : Y × I → X and suppose
there is a map F̃ : Y × {0} → X̃ that is a lift of F |Y×{0}. Then there is a unique map

F̃ : Y × I → X lifting F that restricts to the previous F̃ on Y × {0}. Diagrammatically,
given all of the following solid arrows, the dotted arrow exists and is the unique map making
the triangle commute.

X̃ X̃

Y × I X Y × {0} X

p p

F

F̃ F̃

F |Y×{0}

2.1 Corollaries to π1(S
1) ∼= Z

Proposition 2.10 (Fundamental Theorem of Algebra). Every nonconstant polynomial with
coefficients in C has a root in C.

Proposition 2.11 (Brouwer Fixed Point Theorem, dimension 2). Every continuous map
h : D2 → D2 has a fixed point.

Proposition 2.12 (Borsuk-Ulam Theorem, dimension 2). Let f : S2 → R2 be continuous.
Then there exists x ∈ S2 so that f(x) = f(−x).

Proposition 2.13. If S2 = A1 ∪ A2 ∪ A3 where Ai are closed, then one Ai must contain a
pair of antipodal points.
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Proposition 2.14. Let X, Y be path connected. Then π1(X × Y ) ∼= π1(X)× π1(Y ).

Proposition 2.15. The assignment (X, x0) 7→ π1(X, x0) and φ 7→ φ∗ is a functor from
the category of pointed topological spaces to the category of groups. That is, if we have
pointed spaces (X, x0), (Y, y0), (Z, z0) and pointed continuous maps φ : (X, x0)→ (Y, y0) and
ψ : (Y, y0)→ (Z, z0), the following two diagrams commute.

π1(X, x0) π1(Y, y0) π1(Z, z0)
φ∗

(ψφ)∗

ψ∗

π1(X, x0) π1(X, x0)

Id∗

Id

That is, (ψφ)∗ = ψ∗φ∗ and Id∗ = Idπ1(X,x0).

Proposition 2.16. π1(S
n) = 0 for n ≥ 2.

Proposition 2.17. Let X =
⋃
αAα, where each Aα is a path connected open subset of X,

and x0 ∈ Aα for all α. Suppose that Aα ∩ Aβ is path connected for each α, β. Then every
loop in X based at x0 is homotopic to a product of loops each of which is contained in some
Aα.

Proposition 2.18. R2 is not homeomorphic to Rn for n 6= 2.

Proposition 2.19. Let A be a retract of X and ι : A → X be the inclusion. Then the
induced homomorphism ι∗ : π1(A, x0)→ π1(X, x0) is injective. If A is a deformation retract
of X, then ι∗ is an isomorphism.

Proposition 2.20. Let r : X → A be a retraction. Then r∗ : π1(X)→ π1(A) is surjective.

Proposition 2.21. If φ : X → Y is a homotopy equivalence, then φ∗ : π1(X) → π1(Y ) is
an isomorphism.

2.2 Van Kampen’s Theorem

Proposition 2.22 (Universal Property of Free Product). Let Gα be a collection of groups,
and let ∗αGα be the free product. Let H be a group, and suppose we have a collection φα :
Gα → H of group homomorphisms. Then there is a unique homomorphism φ : ∗αGα → H.
Given a word g1 . . . gn, φ acts on the word by applying φα to each gi, where α is chosen to
match which Gα that particular gi comes from.

Proposition 2.23 (Van Kampen’s Theorem). Let X =
⋃
αAα where each Aα is path con-

nected and an open subset of X, and each Aα contains the basepoint x0. Suppose that Aα∩Aβ
is path connected for all α, β. Let jα : π1(Aα, x0)→ π1(X, x0) be the homomorphism induced
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by the inclusion Aα ↪→ X. Let Φ : ∗απ1(Aα, x0) → π1(X, x0) be the unique extension of all
the jα. Then Φ is surjective.

Let iαβ : π1(Aα ∩ Aβ, x0) → π1(X, x0) be the homomorphism induced by the inclusion
Aα ∩ Aβ ↪→ X. If Aα ∩ Aβ ∩ Aγ is path connected for all α, β, γ, then ker Φ is the normal
subgroup N generated by elements of the form iαβ(ω)iβα(ω)−1 for ω ∈ π1(Aα ∩ Aβ, x0).
Consequently,

π1(X, x0) ∼= (∗απ1(Aα)) /N

Proposition 2.24. Let (Xα, xα) be a collection of path connected pointed spaces, so that for
each α there exists Uα ⊂ Xα where Uα deformation retracts to the point xα. Then (by Van
Kampen’s Theorem), the fundamental group of the wedge sum by identifying all basepoints
xα is the free product of the fundamental groups. Symbolically,

π1

(∨
α

Xα

)
∼= ∗αXα

Proposition 2.25.

π1

(∨
α∈A

S1
α

)
∼= ∗αZ ∼= F 〈A〉

where F 〈A〉 is the free group on the set A.

Proposition 2.26. The fundamental group of any connected graph is free.

Proposition 2.27. Let (X, x0) be a path connected space, and form a space (Y, x0) by at-
taching 2-cells e2α to X via attaching maps φα : (S1, s0) → (X, x0). Then the inclusion
ι : (X, x0) ↪→ (Y, x0) induces a surjection ι∗ : π1(X, x0)→ π1(Y, x0).

Then kernel of ι∗ is the subgroup of π1(X, x0) generated by elements of the form γαφαγα,
where φα is one of the attaching maps and γα is a path from x0 to φα(s0).

ker ι∗ = 〈γαφαγα〉

Consequently, π1(Y ) ∼= π1(X)/ ker ι∗.

Proposition 2.28. Let (X, x0) be a path connected space, and form a space (Y, x0) by attach-
ing n-cells to X, where n > 2. Then the inclusion (X, x0) ↪→ (Y, x0) induces an isomorphism
π1(X, x0) ∼= π1(Y, x0).

Proposition 2.29. Let X be a path connected cell complex. Then the inclusion of the
2-skeleton X2 ↪→ X induces an isomorphism π1(X

2) ∼= π1(X).

Proposition 2.30. Let Mg be the orientable surface of genus g. Then π1(Mg) has the
presentation

〈 a1, b1, . . . , ag, bg | a1b1a−11 b−11 , . . . , agbga
−1
g b−1g 〉

As a consequence, Mg is homotopy equivalent to Mh if and only if g = h.
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Proposition 2.31. Let Ng be the nonorientable surface of genus g. Then π1(Ng) has the
presentation

〈 a1, . . . , ag | a21 . . . a2g 〉
As a consequence, Ng is homotopy equivalent to Nh if and only if g = h.

Proposition 2.32. Let G be a group. Then there is a 2-dimensional cell complex X so that
π1(X) ∼= G.

2.3 Covering Spaces

Proposition 2.33 (Homotopy Lifting Property). Let p : X̃ → X be a covering space, and

let ft : Y → X be a homotopy, and suppose there is a lift f̃0 : Y → X̃ lifting f0. Then there
exists a unique homotopy f̃t : Y → X̃ lifting ft that agrees with f̃0 at t = 0. This is depicted
in the following diagrams.

X̃ X̃

Y X Y X

p p

f0

f̃0

ft

f̃t

The following is a special case of the homotopy lifting property where Y is a single point.

Proposition 2.34 (Path Lifting Property). Let p : X̃ → X be a covering space and f : I →
X be a path. Define x0 = f(0). For each x̃0 ∈ p−1(x0), there is a unique path f̃ : I → X̃
lifting f that begins at x̃0.

X̃

I X

p

f

f̃

Proposition 2.35. Let p : (X̃, x̃0) → (X, x0) be a covering map. The induced map p∗ :

π1(X̃, x̃0) → π1(X, x0) is injective. Furthermore, the image subgroup p∗(π1(X̃, x̃0)) consists

of homotopy classes of loops in X based at x0 whose lifts to X̃ starting at x̃0 are loops.

Proposition 2.36. Let p : X̃ → X be a covering space with X̃ and X path connected. The
number of sheets of the covering is equal to the index of the image subgroup p∗(π1(X̃)) in
π1(X).

Proposition 2.37 (Lifting Criterion). Let p : X̃ → X be a covering space, and f : Y → X

be a map. Assume that Y is path connected and locally path connected. Then a lift f̃ : Y → X̃
exists if and only if f∗(π1(Y )) ⊂ p∗(π1(X̃)). (Below are some relevant diagrams.)

π1(X̃) X̃

π1(Y ) π1(X) Y X

p∗ p

f∗ f

f̃
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Proposition 2.38 (Unique Lifting Property). Let p : X̃ → X be a covering space and let

f : Y → X, where Y is connected. If f̃1, f̃2 are both lifts of f , and f̃1 and f̃2 agree on one
point, then f̃1 = f̃2.

X̃

Y X

p

f

f̃1,f̃2

Proposition 2.39. Let X be a path connected, locally path connected, and semilocally simply
connected. Then there is a simply connected covering space p : X̃ → X. It is unique up to
isomorphism.

Proposition 2.40. Let X be path connected, locally path connected, and semilocally simply
connected. Then for every subgroup H ⊂ π1(X), there is a covering space p : XH → X such
that p∗(π1(XH)) = H.

Proposition 2.41. Let (X, x0) be path connected and locally path connected. Let p1 : X̃1 →
X and p2 : X̃2 → X2 be path connected covering spaces. Then X̃1 and X̃2 are isomorphic via
an isomorphism f : X̃1 → X̃2 taking a basepoint x̃1 ∈ p−11 (x0) to x̃2 ∈ p−12 (x0) if and only if

p1∗(π1(X̃1, x̃1)) = p2∗(π1(X̃2, x̃2)).

Proposition 2.42 (Classification of Covering Spaces, with basepoints). Let (X, x0) be path
connected, locally path connected, and semilocally simply connected. To a path connected
covering space p : (X̃, x̃0) → (X, x0), we associate the subgroup p∗(π1(X̃, x̃0)). This gives
a bijection between the set of basepoint-preserving isomorphism classes of path connected
covering spaces p : (X̃, x̃0)→ (X, x0) and the set of subgroups of π1(X, x0).

Proposition 2.43 (Classification of Covering Spaces, ignoring basepoints). Let X be path
connected, locally path connected, and semilocally simply connected. To a path connected
covering space p : X̃ → X, we associate the conjugacy class of the subgroup p∗(π1(X̃)) in
π1(X). This gives a bijection between isomorphism classes of path connected covering spaces

p : X̃ → X and conjugacy classes of subgroups of π1(X).

Proposition 2.44. Let p : X̃ → X. A deck transformation X̃ → X̃ is uniquely determined
by where it sends a single point. In particular, any deck transformation with a fixed point is
the identity.

Proposition 2.45. Let p : (X̃, x̃0) → (X, x0) be a path connected covering space of a path

connected and locally path connected space X. Let H be the subgroup p∗(π1(X̃, x̃0)). Then

1. The covering space p : X̃ → X is normal if and only if H is a normal subgroup.

2. The group of deck transformations is isomorphic to the quotient N(H)/H, where N(H)
is the normalizer.

3. If X̃ is the universal cover, then the group of deck transformations is isomorphic to
π1(X). (This follows immediately from (2)).
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Proposition 2.46. Let G act on X̃ via a covering space action. Then

1. The quotient map p : X̃ → X̃/G defined by x̃ 7→ Gx̃ is a normal covering space.

2. If X̃ is path connected, then G is the group of deck transformations of the covering
space p : X̃ → X̃/G.

3. If X̃ is path connected and locally path connected, then G ∼= π1(X̃/G)/p∗(π1(X̃)).

4. If X̃ is path connected, locally path conected, and simply connected, then G ∼= π1(X̃/G).

3 Simplicial and Singular Homology

3.1 ∆-Complexes and Simplicial Homology

Proposition 3.1. Let X be a ∆-complex, and let ∂n be the boundary homomorphisms. Then
∂n−1 ◦ ∂n = 0. Thus we have a chain complex

. . . ∆n(X) ∆n−1(X) ∆n−2(X) . . .
∂n+1 ∂n ∂n−1 ∂n−2

3.2 Singular Homology

Proposition 3.2. Let X be a space, and let ∂n be the boundary homomorphism. Then
∂n−1 ◦ ∂n = 0, so we have a chain complex

. . . Cn(X) Cn−1(X) Cn−2(X) . . .
∂n+1 ∂n ∂n−1 ∂n−2

Proposition 3.3. Homeomorphic spaces have isomorphic singular homology groups.

Proposition 3.4. Let X be a space, written as a disjoint union
⊔
αXα where Xα are the

path components of X. Then

Hn(X) = Hn

(⊔
α

Xα

)
∼=
⊕
α

Hn(Xα)

Proposition 3.5. If X is nonempty and path connected, then H0(X) ∼= Z. Consequently,
for any space X, H0(X) =

⊕
i∈I Z where the path components of X are also indexed by I.

Proposition 3.6. If X is a point, then H0(X) ∼= Z and Hn(X) = 0 for n ≥ 1.

Proposition 3.7. Let X be a path connected space. Then H1(X) is the abelianization of
π1(X).
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3.3 Homotopy Invariance of Singular Homology

Proposition 3.8. Homotopy equivalent spaces have isomorphic homology groups. (To be
shown at the end of this section.)

Proposition 3.9. Let f : X → Y , and let f# : Cn(X) → Cn(Y ) be the induced map on
singular n-chains. Then f#∂ = ∂f#, so the following diagram commutes.

. . . Cn+1(X) Cn(X) Cn−1(X) . . .

. . . Cn+1(Y ) Cn(Y ) Cn−1(Y ) . . .

f#

∂n+1

f#

∂n

f#

∂n+1 ∂n

Proposition 3.10. A chain map of chain complexes induces homomorphisms between the
homology groups of the complexes. Concretely, if Cn and Dn are complexes with homology
HC
n and HD

n respectively, and fn : Cn → Dn is a chain map, then fn induces a homomorphism
fn : HC

n → HD
n .

Proposition 3.11 (Functoriality of Homology). Let f : Y → Z and g : X → Y , and let
f∗, g∗ be the induced maps on (singular) homology. Then (fg)∗ = f∗g∗. Additionally, the
induced map from the identity is the identity, i.e. (IdX)∗ = IdHn(X).

Proposition 3.12. Chain homotopic maps induce the same homomorphism on homology.

Proposition 3.13. If f, g : X → Y are homotopic, then the induced maps f#, g# : Cn(X)→
Cn(Y ) are chain homotopic. Consequently, f, g induce the same homomorphism on homol-
ogy, f∗ = g∗ : Hn(X)→ Hn(Y ).

Proposition 3.14. If f : X → Y is a homotopy equivalence, then the induced maps f∗ :
Hn(X)→ Hn(Y ) are isomorphisms for all n.

Proposition 3.15 (Some Basic Facts About Exact Sequences). Let A,B,C be abelian
groups. (Or more generally, R-modules.)

1. 0→ A→ B is exact if and only if A→ B is injective.

2. B → C → 0 is exact if and only if B → C is surjective.

3. 0→ A→ B → 0 is exact if and only if A→ B is an isomorphism.

4. 0 → A → B → C → 0 is exact if and only if A → B is injective and B → C is
surjective. If this is exact, then B → C induces an isomorphism C ∼= B/ imA

Proposition 3.16 (Long Exact Sequence of Homology). Let X be a space and let A ⊂ X be
a nonempty closed subspace that is a deformation retract of some neighborhood in X. (That
is, (X,A) is a good pair.) Then there is an exact sequence
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. . . H̃n(A) H̃n(X) H̃n(X/A) H̃n−1(A) H̃n−1(X) . . .

. . . H̃0(X/A) 0

ι∗ j∗ ∂ ι∗

Proposition 3.17 (Homology of Spheres). H̃n(Sn) ∼= Z and H̃i(S
n) = 0 for i 6= n.

Proposition 3.18 (Brouwer Fixed Point Theorem). ∂Dn is not a retract of Dn. Hence
every map f : Dn → Dn has a fixed point.

Proposition 3.19. Let X be a space and A ⊂ X. Then we have an exact sequence of chain
complexes 0 → Cn(A) → Cn(X) → Cn(X,A) → 0. This induces a long exact sequence on
homology:

. . . Hn(A) Hn(X) Hn(X,A) Hn−1(A) Hn−1(X) . . .

. . . H0(X,A) 0

ι∗ j∗ ∂ ι∗

Proposition 3.20. If f, g : (X,A)→ (Y,B) are homotopic through maps of pairs (X,A)→
(Y,B), then f∗ = g∗ : Hn(X,A)→ Hn(Y,B).

Proposition 3.21 (Excision Theorem, Version 1). Let X be a space and let Z ⊂ A ⊂ X
where the closure of Z is contained in the interior of A. Then the inclusion (X \Z,A\Z) ↪→
(X,A) induces isomorphisms Hn(X \ Z,A \ Z)→ Hn(X,A) for all n.

Proposition 3.22 (Excision Theorem, Version 2). Let X be a space and let A,B ⊂ X

such that the X ⊂
◦
A ∪

◦
B. Then the inclusion (B,A ∩ B) ↪→ (X,A) induces isomorphisms

Hn(B,A ∩B)→ Hn(X,A) for all n.

Proposition 3.23 (Mayer-Vietoris Sequence). Let X be a space. If A,B ⊂ X such that

X =
◦
A ∪

◦
B, then we have an exact sequence on homology:

. . . Hn(A ∩B) Hn(A)⊕Hn(B) Hn(X) Hn−1(A ∩B) . . .

. . . H0(X) 0

More generally, if X = A∪B and there are neighborhoods U such that U deformation retracts
onto A and V where V deformation retracts onto B, then we get the same exact sequence.

(So we can not worry about whether X =
◦
A ∪

◦
B.)
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